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Phase Transition for Absorbed Brownian Motion 
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We study one-dimensional Brownian motion with constant  drift toward the 
origin and initial distribution concentrated in the strictly positive real line. We 
say that at the Iirst time the process hits the origin, it is absorbed. We study the 
asymptotic behavior, as t ~ ,:,'., of m,,  the conditional distribution at time zero 
of the process conditioned on survivul tip to time t and on the process having 
a fixed value at time t. We iliad that there is a phase transition in the decay rate 
of  the initial condition. For fast decay rate (subcritical case) m, is localized, in 
the critical case m, is located around x/~, and for slow rates (supercritical case) 
m, is located around t. The critical rate is given by the decay of the mi,fimal 
qt, asistationary distribution of this process. We also study in each case the 
asymptotic distribution of the process, scaled by x/7, conditioned as before. We 
prove that in the subcritical case this distribution is a Brownian excursion. In the 
critical case it is a Brownian bridge attaining 0 for the first time at time I. with 
some initial distribution. In the supercritical case, after centering around the 
expected value--which is of  the order of t - -we show that this process converges to 
a Brownian bridge arriving at 0 at time 1 and with a Gaussian initial distribution. 

KEY WORDS: Absorbed Brownian motion; qt, asistationary distributions: 
conditioned Brownian motion with drift. 

1. I N T R O D U C T I O N  

Let (B, ) ,~o  be a standard Brownian mot ion  defined on (.('2,-~, (.,~,), P). 
Take a > 0 a n d  c o n s i d e r  

X~ = B,  - ~t 
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a Brownian motion with constant drift - ~ .  By P.,. we mean the distribu- 
tion law of the process with initial condition Xo = x. 

Let v be a measure concentrated on (0, oo). We denote by P,. the 
distribution of the process when the initial point Xo is chosen with the 
measure v. Let Ti~ be the hitting time of the origin, that is, T =  
inf{ t: X, = 0}. Informally we say that at this time the process is absorbed 
in 0. 

One of the problems studied in absorbing Markov  processes is the 
behavior of the process conditioned on nonabsorption. That  is, one studies 
the law 

p,.{e I 
To our knowledge there are no attempts in the literature to study the 

conditioned process in the whole interval [0, t]. We want to take advan- 
tage of the fact that one can compute almost everything in the Brownian 
motion setting to show the kind of results that one can expect in more 
general cases. 

We consider initial distributions v on (0, o~) satisfying three conditions 
(the classification will be clear in a moment):  

�9 Subcritical case: ~ xe ~-" v(d.u < co. 

�9 Critical case: dv/dx = kx'"e '~" for some m >/0. 

�9 Supercritical case: d v / d . u  where 0E(0,  ~) and h is, for 
instance, a polynomial in x. 

In Theorems 1 and 2 we study the law of the process (J(,-).,-~ [o.,1 condi- 
tioned on T(~ > t. In the subcritical and critical cases we rescale space 
dividing by ,j '~. In the subcritical case we show that the law of the process 

(X.,.,/x/~).,.~ to. J] conditioned on Ti~> t converges to the law of a Brownian 
excursion. That is, it converges to a Brownian motion conditioned to stay 
positive in (0, 1 ) and to be at the origin at times 0 and 1. In the critical case 
we show that the law of the above rescaled and conditioned process 
converges to the law of a Brownian bridge with initial distribution (propor-  
tional to) x '''+ te --"'-"'- conditioned to stay positive in [0, 1 ) and to be at the 
origin at time 1. 

In the supercritical case we change the normalization and show that 
(X~,.,/t),.~ to.~] conditioned on Ti~'>t converges in distribution to the deter- 
ministic motion that follows the line y ( s ) = ( e - O ) ( 1 - s ) .  To see the 
fluctuations around this line we study the process 

(X.-v(sl I 
" ~ t - t  /.~.~ [0. I ] 
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and show that it converges to Brownian motion conditioned to be at 0 at 
time 1 with a Gaussian initial distribution. 

We conjecture that the same kind of results can be shown for the 
asymmetric random walk on ~. This process makes jumps of length one 
with probabili ty p to the right and q to the left, with q >p .  The minimal 
qsd and the Yaglom limit were obtained by Seneta. ~8~ 

In contrast, for a family of probabilistic cellular au tomata  that con- 
tains subcritical oriented percolation, Ferrari et al/4~ obtained that the pro- 
cess starting at a fixed configuration conditioned to nonabsorpt ion until t 
stays essentially in a finite set of states for all times s ~< t. Hence, if we call 
X, the number  of infected points at time t, then (X,.,/v/7).,,~[o.~j condi- 
tioned on T6V>t converges to the deterministic trajectory y ( s ) -O .  The 
same must be true for the subcritical branching process. It would be 
interesting to understand how these models behave in the critical and 
supercritical cases. 

In Section 2 we give some preliminary definitions and facts about 
Brownian motion and Brownian bridges. In Section 3 we state our main 
results for the conditioned process and in Section 4 we give the proofs. 

2. B R O W N I A N  BRIDGES A N D  EXCURSIONS 

We recall in this section some basic facts about  Brownian bridges and 
excursions that will be used in the statements of our results. 

The transition density of the process X, = B , -  s t  is given by 

pl~(x, y, t) = e-~<"-"~-~2'/2p(x, y, t) 

where 

1 - ( x  - i , ) 2 / 2 t  p(x, y, t ) = - - e  - 

is the transition density of a Brownian motion. 
We denote by 

T;, v = inf{ t > 0: X, = a} 

the hitting time of state a. The process will start with initial condition x > 0 
and we say that the process is absorbed at time To x and that the process 
survived till time t if To x > t. 

The semigroup of the process killed at 0 is P ' f ( x ) =  nz,.(f(X,), T~r> t) 
and we denote by p~=~(x, y, t) its associated density. We have 

p~_~(x, y, t ) = p ~ ( x ,  y, t ) - - p ~ ( x ,  --y, t) for x, y > O  

8 2 2 / 8 6 / I - 2 - 1 5  
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and we denote  p _ ( x ,  y, t) - p ' ~ ( x ,  y,  t), so 

p _ ( x ,  y,  t ) = p ( x ,  y, t ) - p ( x ,  - y ,  t) 

= - e - ~'-' +-'-' ~,2, sinh for x, y > 0 

which is the transi t ion density of  a Brownian  mot ion  which does not  
at tain 0. 

When  one fixes the endpoints  of  a pa th  at t imes 0 and t at x and y, 
respectively, the condit ional  distr ibution 

P , . { X e A I X , = y }  for A e ~ , ,  

does not  depend on the drift 0~. In fact the joint  density for passing f rom 
z~ to z 2 at t imes O<.s~ < s , _ ~ t  is given by 

p(x ,  z i, s l ) p ( z l ,  z,_, s2 - s l ) p (z2 ,  y, t - s,_) 
q t ' . ' "n(z  I , z,_; s l ,  s2) = 

p (x ,  y, t) 

When we also impose  that  the process does not  at tain 0 we have a similar 
result, i.e., the distr ibution 

P , . { X e A I T i ~ V > t , X , = y }  for A~o~, 

does not  depend on the drift ~ and its jo int  density is given by 

p _ ( x ,  z I , s l )  p _ ( z L ,  zz,  s,_ - s , )  p _(z 2, y, t -s ,_)  
q~2""" '~{zl, z~; sD, s2) - 

p _ ( x ,  y, t) 

Hence when we evaluate this kind of  condi t ional  distr ibution we can 
assume that  X is a Brownian mot ion.  

The  functions q~"'.'"'~ and qC,...,..,~ are jo int  t ransi t ion densities of  
Brownian  bridges passing f rom x to y in [0,  t ] ,  the last one being such tha t  
the process dos not  at tain 0. Processes with such densities are denoted 
respectively B"'-'"' and B+-'"'; the last one is called a positive Brownian  
bridge between x and y in [0, t] .  The  associated dis tr ibut ions are denoted 
respectively by BB"-'" '  and B B + - . "  " '  When  t = 1 we omit  the dependence in 
t, so we write BB+. '  and so on. We shall p rove  that  it is possible to take 
limits, in distribution, in x and y for positive Brownian  bridges BB'+-". 

I . e m m a  1. Let B be a Brownian  motion.  Let x,:,y,: be strictly 
positive numbers  for e > 0 and x,: --* x,  y,: --* y as e I, 0. Then  the P.,. condi-  
t ional distr ibution of B given { ToB > 1, B~ = y,:} converges  in dis tr ibut ion as 
e~0.  
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This distribution is also called a positive Brownian bridge between x 
and y in [0, 1 ], we denote it BB+ y, and a process with this distribution is 

x v R R o . o  denoted B+ . Notice that _ _ +  is a Brownian excursion in [0, 1 ]. In ref. 2 
the above result was shown for the special case x,: = y,: = e. 

As usual, convergence in distribution means weak convergence on the 
space of continuous functions over a suitable time interval. 

3. THE CONDITIONED PROCESS AND M A I N  RESULTS 

For a probability measure v concentrated on 
by P,, the distribution law of the process with 
P,.{Xoe C} = v(C), i.e., 

(0, oo) we denote 
initial distribution 

P, .{XeA} = I P , . { X e A }  dv(x) for A e ~  

The probability measure p defined in (0, ~ )  by dp(y)=o~2ye .... "dy is 
the limit conditional measure of (X,) in the sense that it satisfies for any 
initial condition x > 0 

p ( C ) =  lim P.,.{X, e C [  Ti~">t} for every Borel subset C c ( 0 ,  co) 

This measure is conditionally invariant,that is, it satisfies the following 
property: 

p(C)=P,{X,  eC[ TX>t}o V t > 0  and for any Borel set C c ( 0 ,  oo) 

The family of absolutely continuous probability measures which are 
conditionally invariant is a one-parameter family of left eigenvectors of the 
semigroup P '  associated to the diffusion (X,); then they satisfy 

pw~P'=e~"p~'~ for t > 0  and ~ , e [ - ~ 2 / 2 , 0 )  

The probability measure associated to the minimal value )'o = -ct2/2 turns 
out to be the limit conditional measure, so p =pc}.,,( The other ones are 
given by 

pl~'~(x) = e ..... s i n h ( x , / ~  2~, x), for ~,e Q,o, 0) 

For ~,/>0, the measure/ t  ~;'~ defined as above is also a left eigenvector and 
it has infinite mass. Notice that when starting from the conditionally 
invariant distributions, the absorption times are exponentially distributed 

P,,,~.,{T6V>t} =e;" 
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and consequently ordered with respect to the standard stochastic order. 
The extreme distribution ~ =p'~,,I is the one that has minimal absorption 
time. For this reason p =ptr,,I is called the minimal quasistationary dis- 
tribution. 

Observe that associated to each ), >~ ~o there is a positive right eigen- 
vector of the semigroup given by 

r for )'>)'o and q~r'~ 

For these results see ref. 6, where many of them were shown. For a general 
discussion concerning limiting conditional measures and conditional 
invariant measures see refs. 1, 3, 6, and 9. The limit conditional distribu- 
tions were firstly study by Yaglom ~'~ for the subcritical branching 
processes. 

Assume that we start from some initial probability distribution v on 
(0, oe). Then look for the conditional distribution of X ~ given that X 
survived up to t and 2", belongs to some bounded subset of (0, or). We 
show that there is a phase transition concerning the region where the so 
conditioned distribution of Xo is concentrated. This transition depends on 
the tail of v and it takes place when the tail is of the order e -'~', where 0r 
is the decay parameter of the minimal quasistationary distribution. In fact 
the transition depends on some integrability condition on v with respect to 
the asymptotic ratio 

lira p '{  r~ t} 
, - ~  P,{ T6v> t} 

This asymptotic quantity turns to be the positive right eigenfunction 
associated to the minimal value 70. This explains why the critical rate is 
given by 0c In the proof of our result we need some domination condition 
of the ratio and this is given by the following elementary result, which 
follows from classical estimations. 16~ 

k e m m a  2. We have 

e d  76 t} <x  e.,... ,.,e,.:/2 , 
e,.{ ro > t} y 

<~K(e)Xe ..... ,,~ 
Y 

lim P-"{ r~ t}-Xe='-"--"'  
, - ~  P y { r X > t }  y 

for t>/e for some e>O 



Absorbed Brownian Mot ion wi th  Dri f t  219 

In our theorems we are going to assume y > 0 is fixed. On the other 
hand, v will be a probability measure on (0, ~ ) .  Our results deal with 
distributions v satisfying one of the following three disjoint conditions, 
which we call (C1)-(C3). 

(C1) ~xe' -"v(dx)<oo.  

For  (C2) and (C3) we assume dv ~dx:  

(C2) dv/dx=kx" 'e  -~'- for some m~>0. 

(C3) dv /dx=h(x )  e -~ where 0~(0,  0~) and the function h satisfies 
Vx>O: 

(i) h ( ( o ~ - O ) t + x v / t ) / h ( ( o ~ - O ) t ) - - * , _ ~  [l for some con- 
stant/~e(O, oo). 

(ii) h( (oL-O) t+x~ /~) /h ( (oL-O) t )< .g (x )  for some func- 
tion g satisfying 

f O  >; --  x 2 / 2  + e.v g(x)  e ' dx < oo for some e > 0 

We observe that the class of functions h which satisfy condition 
(C3)(i), (ii) includes all the polynomials, and also all the finite combina- 

III i tions of the form Y ~ ( x + a i )  , where a ; > 0  if mi<0 .  It cannot contain 
exponentials, but it contains functions between polynomials and exponen- 
tials, for instance, h ( x ) =  x ~~ for large x. 

T h e o r e m  1. For  v satisfying one of the above conditions we have: 

(C1) lim P, . {Xo<x  [ X , = y ,  ToX>t} 
t ~ ,:t2_ 

= u e  ~" v ( d u )  u e  ~" v(du) 

If also dv ~ dx, then 

(C2) 

for x > O  

d p ,, { Xo <~ x I X, To x > t } - xe~" dv/dx 
,lirn ~ = Y' ~ x' e'-"' v( dx' ) 

d P,,{Xo.<X./71X,=y, rg>t} 

=c(m)x ' "+ le  -r for x > O  

where c(m) = (~o ~- u m+ 'e-"2/2 du) - ' .  
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d p.,{x,,<~(o~-o)t+x,/-ijx,=y, T;;>t}) (C3) lim 

1 = e - .,2/2 for x e R 

The case (C2) is called critical and cases (C1) and (C3) are called 
respectively subcritical and supercritical. 

Now we study the conditional distribution P . , . { X E A I X , = y }  for 
A 6 ~,, properly localized and in the scale v"t-. For treating the three cases 
(C1)-(C3) with a general approach we are going to put 0 = ~  in case (C1) 
or (C2) and 0 < ~  in case (C3). We shall consider the process 

1 
Z , , = - ~ t ( X , , , - ( o ~ - O )  t ( 1 - u ) )  for u>~0 

which is a Brownian motion with drift. We will study the limit distribution 
of this process for u s  [0, 1 ] conditioned on the event {X, =y ,  T;~> t}. We 
have {X, =y}  r {Z~ =y/x,~-}. By defining 

S z'' = inf{ u > 0: Z,, ~< -(0~ - 0) x/~(1 - u)} 

we get { T(~ > t} r { S z'' > 1}. On the other hand, Xo = (Z,, x/~ + (~ - 0)t), 
so that Xo ~ v is equivalent to Zo ~ v', where 

v'(z, z + dz) = v((z ~ + (~ - O)t), ((: + d:) , / 7  + ( ~ -  0)t)) 

Then, studying the P,. limit distribution of (X,o - ( ~ -  0) t(1 - � 9  
x/~ with �9 ~ [0, 1 ] conditioned on the event {X, =y ,  T ~ >  t} is equivalent 
to studying 

)im P,,.{Z.~A l S~"> 1, Z, =y/,eq} (1) 

for A in the a-field generated by the coordinates belonging to [0, 1 ]. 
In the next result we use an extended notion of Brownian bridges. 

Even if the initial point is not fixed, we continue to call it a Brownian 
bridge; thus the distribution of P~{B ~ A ]B~ =y} is denoted BB ~'-~', and if 
r is concentrated on (0, o~), the distribution P ~ { B ~ A  ] T ~ >  1, B= =y} is 
denoted BB~.". 

Theorem 2. The limit conditional distribution given in (1) is the 
following one in the three different cases: 

(CI) A Brownian excursion on [0, 1]. 
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(C2) A Brownian bridge conditioned to be positive in [0, 1 ), BB~; ~ 
where r has density c(m)x"'+le -'27. 11.,->ol. 

(C3) A Brownian bridge BB ~'~ where r has Gaussian density 

e -.,-'/2/x/~. 

We remark that result (C3) is equivalent to saying that when we 
reverse the time on the limit distribution, i.e., we make u'= 1 - u  for 
u~ [0 ,  1], it is a Brownian motion starting from 0. On the other hand, 
(C3) implies that in the supercritical case (X~.,/t),~to.~] conditioned on 
{ Tff> t} converges in distribution to the line y(s) = ( ~ -  0)(1 - s ) .  

4. P R O O F  OF R E S U L T S  

Proof of  Lemma 1. We prove this result only in the case x =3'--O. 
We follow the method developed in ref. 2. The proof is divided into two 
parts. First we prove that the finite-dimensional distributions converge. 
Second we prove that the set of measures P.,.{ �9 I T~ z >  1, Z~ =y,:} is tight. 

The convergence of the finite-dimensional distribution follows from the 
Markov property and the limit of the joint density is given by 

q_(zl ,z2,s~,s ,_)-  lim q'_"-<l~(zl, z:, sl s2) 
x '  --, 0 
) "  ~ 0 

2 2  1 .7~  e - ( : i  '2Xl + z~, 211 - s2 l) 

-- X//~(SI( l--$2))  3 2  P-(ZI'Z2"S'~--SI) 

which corresponds to the transition density of a Brownian excursion. This 
last limit is easily computed by using the l'H6pital rule. 

We note that the marginal conditional density is given by 

q _ ( z , s ) -  lim p_(x ' , z , s )p  ( : , ) , ' , t - s )  2:2e -:2'2'~1a-'1 
.,-,-1, p (x' ,  y ' ,  t) , / ~ ( s ( 1  - s ) )  3-" 
.1" ~ 0 

For tightness we shall prove that for every I/2 > ~ > 0  the induced 
measures on ~[~,  I - ~ ]  by P.,. { �9 [ TiZ> I, Z, =y,:} is a tight family, and 
that for every q > 0 

lim lim P,.,: { sup IZ.I <,zl T~> I. Z ,  = 9,,:} = 1 (2) 

l imlimP. , .{  sup I z , l < q l  TIz> I, Z, =y,:} =1  (3) 
~ 1 0  c , [ 0  I - - ~ < u ~ <  I 
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The corresponding tightness on ~g[0, 1] follows from Theorem(3.1) in 
ref. 2. 

Let us fix 1/2 > ~ > 0. For every e > 0, consider a compact set K of 
cg[6, 1 - 6] such that BB~~ -IK) >~ 1 - e, where n: cs 1 ] --* cg[O, 1 - 6] 
is the natural projection and BB~_ ~ is the distribution of a Brownian 
excursion in [0, 1 ]. The Markov property shows that 

P ~ { Z e a - ' K  I TZ> l, Zl=y,:} 

= f~'- fJ.~i; p_(x,:,u, 6)p_(v, y,., e$)BB,+,..~_2a(K)dudv 
p_(x,:, y,:, l) 

We remind the reader that BB'+" ~--'a is the distribution of a positive 
Brownian bridge on [0, 1 -  2~] with u as initial position and v as final 
position. 

By l'H6pital rule and Scheffe's lemma ~71 we deduce 

lira P.,.{ Z ~ x - ~ K  I TZ > 1, Z ,  = y,:} = BB~~ 

from which the tightness in cg[6, 1 - ~ ]  follows. 
We shall now prove (2). First notice that 

J(e, 6)=P.,. { sup 1 2 . , . 1 < ' 7 1 T ~ > I ,  Zt=Y~.} 
0 ~< s ~ 6 

Z - , = P, .{  sup IZ.,.l<ri, T, ,>&Z,~edz} p (z,y,., - f i )  

=['"Jo p'~{ T# > di I Tt5>fi' Z,,=z} p_(z, y,:, 1 -cs)p_(x, : ,  z, fi) 
p_(x,:, y,:, 1) 

Using Proposition 2.8.10 from ref. 5, we obtain 

P.,.~{T,Z> O I T Z > d ,  Za=z} = Z p_(x,:, z+2nr I, r~) 
, ,~  p_(x,:, z, a) 

wherep_(x,y,  t ) =  -p_ (x ,  [y[, t) when x > 0  and y < 0 .  
Therefore 

J(e,,~)= 1+ y, P-(X':'z+2nrl'~5) . . t 
- , , ,o p_(x,:, z, ~) ql2 ...... ~(z, 6) dz 

dz 
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We have the following estimates: 

q~"_':'"" '~(z, 3) 

2 exp [ - ( x ~ / 2 ) (  1 - 3 ) / 0  - ( y ~ / 2  ) 3 / (  1 - 3 )  ] 

x//'2-~ ]- 3( 1 - 3) ] '/2 

fsinh(x,:z/3) sinh( y,:z/(1 - 3 ) ) e x p [ -  z2/23(1 - 3 ) ]  "~ 
X \ / sinh(x,: y,:) 

cosh(~) cosh(~')  2z 2 exp [ - -2 /23 (  1 - 3) ] 
= A  cosh(~_") x / '~  I-3( i _3)]3'2 

where 

A = e x p I - - ( ' ~ l ~ 3 - t - ~ l - ~  3 3 )  1 

x , :  y,:z  I~" . . .  I~1 ~<--~-, 1~'1 ~< 1-- ~ , I ~<x,. v, 

Therefore 

q,:?.. ~ i ) ) ~.1o q_(z,  3) 

Moreover  

D ~i "~ _ :2  '2.ql I -- if) q ": '" ~ ~(z ,  . . . . .  ~'- fi) ~< 33/2 e " " .  e 

for some constants  D and a depending only on r/, for small e. 
On  the other  hand,  

p_(x, : ,  z + 2nr/, fi) 
p_(x, : ,  z, ~) 

=e_ 2,,2,d_,,~_ ,_,,,c,~ (sinh[ (x,:/3)(z + 2nr / ) ] )  

2:'"//'~(c~ z +2ml) = e - 2 n 2 q 2 / s  _ ~  

tbr some I~1 <~x, : l z+2ml l / f i ,  I~'1 ~x,:- .  

(4) 
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Hence, 

l imP-(Xt : . z+2nq,  6)_e-~_,t'-,,'-/a 2: ,,/,~ ( ~ )  
,:to p_(x,: ,z ,  6} 

(5) 

Also, we have for 0 < z ~< r/ 

p_(x,:, z + 2nr/, 6) [ ~< C Inl. e -'-,,'-,t'-.,5+r,ll,,I/,, 
p _(x,:, z, 6) [ z 

(6) 

where C and y depend only on q, for small e. 
From (5) and (6) we deduce that 

0~<lim,:~o p'~{ T'Z > O l TZ > 6' Z,~ = z} = l + ~ e - 2 ' t2 ' f l -  a -  2 z ' ' t r / ' ~  (z + 2n____qq) 
It r 0 

Using (4)-(6) and the dominated converge theorem, we get 

lim J(e, 6 ) = , : , o  1+ ,, o e_ 2,,,_,,._/a_ 2:,,,.,5 z+2nq  ~ -  ------fi)] s/-" 

;2 i,,,2 , , ,  >~o q_(z,  6 ) d z -  ~ e .... -,-,,+l,tl,?/,~ 
11 It r l] 

2ze - d - , . 2 f f (  I - ,5  I 

x ( l + R l n J ) q  , - -  & 
42~ r6(1 

Since 

1/2 q_(z, 6) & ~ 1 
I 

and the last term is bounded by 

3 ~  , �9 . 

[6(1 - 6 ) ]  '/,- ~ Inl e-2"-"-'+l"t"'-"a ,5- o , 0  

the relation (2) follows. The proof of (3) is completely analogous. | 

Proof o f  Tffoorom 1. 

(C1) P , . { X , , < ~ x l X , = ) , , T f > t } -  A( t , x )  
A(t, Go) 
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where 

P,,{ TbV> t} 
A(t, x) = f,i p''{ x,  ~ ay I r , f >  t} �9 P, { r [ >  t} dv(,,) 

By using L e m m a  2 and the fact that /2  is the limit condi t ional  measure,  
i.e., 

P,{X ,  edy  I T;~> t} ,-7-S-~ p(dy) 

we can pass to the limit t --* oo in A(t, x) to obta in  

f[ 
x 

lim A(t, x) = p ( d y )  ue ~'' v(du) 
! ~ , y  ) 

Since this also holds for x = or, the result is shown�9 
Let us show the second s ta tement  in (C1). We denote  f = d v / d x  

[ this  no ta t ion  will be also used in (C2) and (C3)] .  We have 

__d p,.{x0~<x I x , = y ,  r ,f> t} 
dx 

f ( x )  pC~(x, y, t) 
~ f ( x ' )  pl~'(x', y, t) dx' 

f ( x )  e~-"e-c ,,2,1.,--' sinh(xy/t) 
= ~ f ( x ' )  e'-"'e-C i,,z,~.,.,'- sinh(x'y/t) du 

When t--* oo, bo th  terms, n u m e r a t o r  and denomina to r ,  converge to 0. 
Take  u = l/t; in order  to be able to apply  the l 'H6pi ta l  rule, observe that  

d ,, 
dt-~ ( e - ( " / 2 1 "  - sinh(x'yu)) <~ Kx', Vx' > 0 

with K = K ( e )  and uniform in u e ( 0 ,  e), for some small e > 0 .  Hence,  from 
our  hypothese  we can apply  the l 'H6pi ta l  rule and obta in  

d Pi.{X,,~<x I X , = y ,  Z6">t} lim 

f(x) e ' - " ( -  ' _sx- sinh(xyu) + xy  cosh(xyu))  e ...... -i/z 
= lira 

,, ~ o ~ f ( x ' )  e~"'( -- _sx] .,2 sinh(x'yu) + x'y cosh(x ') ,u))  e ..... -'-'/2 dx'  

f ( x )  e~"x 
= I f ( x ' )  e~-"'x ' dx' 
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Now, let us show (C2) and (C3). 

a P , .{Xo~x, /71 r~ '> , ,  x , = y }  (C2) 

f (x  , /7) p,y( , , /7  x, y, t) dy 

I P.,.,./7{ ri}'> t, X, E dy} f(x' ,r dx' 

Easy computations show that this quantity is equal to 

.v . . . .  x x'"e -.,--'...2 sinh(xv/v/7) . p _ ~ . , y / , / 7 , 1 )  
i 

_c-,  ;,/,/7, I) dx' 5 . . . . . . .  ':<: J x'"'p x' x e sinh(x'Y/v/7) dx' 

We can apply the l'H6pital rule to get that 

a p,.{x,)~.,-,s r,-~>t,X,=y} = x"'+'~-"-"-" li~ 

Now we consider (C3). 

(C3) 

Ferrari et  al.  

Io ~ x ' " +  l e -x'2'2 dx '  

a p , . { x , , ~ I ~ - o l t + x v / 7 1  r,-,"> t, x,=3,} 

f ( (~  - O)t + x/~ x} p'~_)((~ - O)t + x/~ x, y, t) 

j f((ot--O)t + x/~ x') p(~'((o~--O) t + v / t  x', y, t)dx' 

h((~-O)  t +. , /T  x ) e  ' ~  ").",/T p _ ( ( ~ - o )  t + x , /7 ,  y, t) 

Jh((ot-O)t + x / ~ )  e-(~-r p_((oL-O) t + x' x/~, y, t)dx'  

By developing the p_ term we find that this expression is equal to 

h((~ - 0) t + x x/% e-"-" 2 sinh{ [(e - 0) + x / x F  ] y} 
t t ! J h((0t - 0) t + x x/~) e -.r sinh{ [(0c - 0) + .x/x/~-] y } dx' 

Dividing the numerator and denominator by h((c~-O)t), making t - ) c o ,  
and using our hypotheses on the function h, we find 

d 
~xP, . {X , )~ (~-O)  t+ x ~/~ l T6V>t ,X,=y}  

e - . \ .2 ~ 2  

~ e- . , -%2 d x ,  

Remark. From Scheff+'s lemma, under condition (C2), we have 
P,.{ X,, ~< x x/~[  T ~ >  t, X, =y}  converges in distribution and its limit has 
a density given by Theorem 1. A similar comment holds under (C3). 
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Proof of  Theorem 2. (C1) In this case Z,, = X,,,/v/~, and we obtain 

P,. {~t t  ~A I X,=y, T f  > t} 

= [  f P.,./,/7{Z~A I Z,=y/x / t ,  T,Z> I} 

�9 P.,.{ r2" > t} ] 
�9 P. , . {X,~dy I T,;' >t}  P ,{T/}>t}  v(dx) 

x[fp,.{X, edylTi~>t} P.,-{Tl~ >t} ]-' 
�9 p ,{T2.>  t } v(&)  

,lim IP.,...,/7{ZEA I Z, =y/v/7, T,7> 1} =BB+(A) 

lim P. , .{X,~dy ] r ( t >  t } =~2ye .... " dy 

P,.{ ToY> t } ~< Kxe'-" for all t big enough, which is v-integrable 
IP,{ Ti~'> t } 

l im p ' {  T~}" > t} _ xe"" 
,-.._ p,{ r;;"> t} 

the result follows from the dominated convergence theorem. 
Let us show the result for the critical and supercriticaI cases (C2) and 

(C3). 
Let F: ~ [  O, I ] --* R be a hounded continuous function. We must study 

the limit of the quantity 

Denote  

L(F(Z) I T,; v> t, X, = y )  

G,(z) = IF__(F(Z) I Ti~ v> t, Z, = y/x/~) 
f ( z )  P:{ T~V > t, Z 1 ~ d y / ~ [ t  } 

h,(z) - 
I f ( - ' )  P:.{ V,7> t ,  z, e c/y/v/t } d~' 

where f =  dv/dx. 
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F r o m  Theo rem 1 we have that  h,(z) --+, ~ .~ h(z) pointwise,  where 

~x ' ' '+ ' c (m)  z ' ' '+ te :'"-" for z > 0 in the critical case 
_ - 2 , - ,  _ - ' 2 , 9  * - -  I h(z) = ~e - '-(~ e - - dz ) in the supercrit ical case 

Observe  that  IG,(z)] ~< ]JFII~, so if we are able to show that  G,(z) 
converge pointwise to a G(z), then 

f h,(z) G,(z) dz , - . , '  f h(z) G(z) dz 

will follow from an appl icat ion of  Scheffgs lemma.  The  identification of  the 
limit will be made  by inspection on G. 

Fo r  s tudying G,(zl we observe that  Z can be assumed to be a 
Brownian  mot ion  (start ing f rom z) because it is a condi t ional  dis t r ibut ion 
with bo th  extremities fixed. 

In the critical case we have Z~=X.,.,/x/~ and so T~;V> t r  T ~ >  1. 
F r o m  L e m m a  1 we have 

V z > 0 :  ~_:(F(Z) I T~Z> 1, Z, =y /v / t )  ,__,, [E:(F(B+~ 

where B+ ~ is a Brownian  bridge f rom z to 0 which does not  a t ta in 0 before 
t ime 1. 

Let us study the supercrit ical case and instead of G,(Z) we will s tudy 

E:(ZeAITi~>t ,  Z t=y/x /~)  for A___,~,~ with r < l  

Now 

•:(Z e A, S z '  > 1, Z, ~ dy/,/7) 

fez., dy/x//7 ) ) =E=(ZeA, Sz' '>r,  zr~, > l - r ,  Z l - , - e  

where ~z.,  = i n f { s >  0: Z.,.~> - ( m - 0 )  v / 7 ( l  - ( r  + s ) ) } .  
Hence the above  expression is 

I IE:(Z ~ A, SZ" > r [ Z,.=2) 

x E ; . (U"  > 1 - r ,  ZI  edy/x//7) e-~ ,. d2  
x/2rtr  
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Let us study the first term in the integral. Fo r  this purpose we shall 
show that 

~ _ _ ( S Z " > r l Z , . = 2 )  , 1 

Make the change of  variables U,. = Z~ + (co-  0) x /~(  1 - s). We have 
Uo = z + (~ - 0) .,77, U,. = 2 + (~( - 0 ) ~ ' ~ ( 1  - r), and S z ' '  > r is equivalent 

/ :  
to T o > r .  Then  

tv:( S Z "  > r l Z~ = 2 ) 

= E(Z,f'>," I U , , = ~ + ( ~ - O ) , , / ' 7 ,  U, = , ~ + ( ~ -  0),,,/7(1 -,-)) 

Since it is a condit ional  distr ibution with fixed extrema, we can assume 
U is a Brownian motion,  and we find that the last expression is 

p _ ( z + ( ~ - o )  v/7, )~ + (~-0)v/7(1  - r ) ,  r) 
p ( z + ( c t - - O )  v / t ,  ~. + (0c--0)x/~-( l - - r ) ,  r) 

= l - e x p  - - ( z + ( c c - O ) x / / - t ) ( 2 + ( o c - O ) x / ' ~ ( 1 - , ' ) )  , 1 
y t ~ ,~- 

Hence 

n: : (ZEA,  S Z " > r i Z , . = 2 )  ,_. , E : ( Z e A I Z r = 2 )  

On the other  hand, make the change of  variable Y,, = Z ,  + (oc - 0)( 1 - 
(r + u )) x / ~  to obtain 

E~.(U-.' > 1 - , . ,  z ,  _, .~dy/v/7) 

=~.+,~ ,,,,,_,.,,/7(r"> 1-,- ,  Y, , .~dy/JT)  

- - p ' ~ - m ' / 7 ( 2  + ( ~ - 0 ) ( 1 - r ) x / ~ , y / x / ~ , l - r ) d y  

which yields 
d 

~Z t ~.(s-" > 1 - , ' ,  z ,  _,.edyl,,/7) 

1 e - V  3 - 0  e-V2/2t  i - r ) e - 2 2 / 2 ( I  - r )  

x/2z~( 1 - r) 

( ) xs inh  \ x / ~ ( l _ r ) + ( o c - 0 ) y  dy 
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By taking 2 = z, r =  0 we also get 

Then, 

L{s~-.' > l, z ,  ~ ay/ , /7} 

1 (&F ) -""= - '% --'-'"-"e -:-'2 sinh \ v / T  + (~ - O) y 4 '  

E~.(SZ" > 1 - r ,  Z, _,.edy/v/T) e -)'~'2{I "}+:2/2 

E__(SZ" > 1, Z, e dy/v/T) '--* ~/1 - r  

and we also get a domination in 2, uniform for large t, which allows to 
integrate in our formula. 

Then 

IE.{ZeAIT;}>t,Z, = y /V"T)  

=E: (ZeA I SZ"> 1, Z, = 3,/~/T ) 

=I  E:(ZeA, sZ" > r I Z, .= 2) 

- z ,  dy/x//-/) e -{)' - :': '2,- E:.(S "" > I - r ,  Z~ _,.e 
X ,/2 

[F_-(SZ" > I, Z, e dY/v/t  ) 
e {t, - } , - t  e - 2 2 / 2 r { I - r l + z 2 / 2  

, - - - '  I E:(Zea I Z,.= 2) 
41-,. 

= f  j E:(ZeA I Z, .= 2) p(z, 2, r)p{2, 0, 1 - r )  d2 
p(z,O, 1) 

d2 

Therefore, 

VAe U .~,.: lim P , . { Z e A I T ? ~ > t , Z , = y } = P { W e A I W , = O  } 
S <  I I ~  s .  

where W is a Brownian  m o t i o n  with a standard Gauss ian  initial distribu- 
tion. 

To finish the proof it suffices to show tightness. Following Theorem 3.1 
of ref. 2, it suffices to study the process around the extremity Zi = y/v~7. 
We are led to prove for any z > 0 

lim lim P:{ sup [ Z , . - y / , , / T l > e l S Z " > l , Z , = y / x / / 7 } = O  
g i l O  t ~  ,~'_ i - 6 ~ < s ~ <  I 
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We have 

P : { S Z " > I l Z t = y / v / 7 }  ,_,~,  I - e - 2 ' = - ~  

Then it is sufficient to show 

lim lim P_{ sup IZ,-y/vGl>c l Z, =y/vG} =0 
6.[0 I ~  l - - 6 ~ < r ~ < l  

By making the change of variable Y,. = Z t _~-y/x/~ we have 

P={ sup IZ,.-yl,/71>elZ,--ylv/7} 
I - 6 ~ < r ~ <  1 

=Po{T/,: ^ T,?'<O l Y, =z-y/v/7} 
, -  , Po(T~'~ ^ T,."<d. I Y, =z)  

This converges to 0 when fiJ, 0 because the Brownian bridge has con- 
tinuous trajectories. II 
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